Determining diurnal variations of land surface emissivity from geostationary satellites

نویسندگان

  • Zhenglong Li
  • Jun Li
  • Yue Li
  • Yong Zhang
  • Timothy J. Schmit
  • Lihang Zhou
  • Mitchell D. Goldberg
  • W. Paul Menzel
چکیده

[1] Infrared (IR) land surface emissivity (LSE) with a high temporal and spatial resolution is very important for deriving other products using IR radiance measurements as well as assimilating IR radiances in numerical weather prediction (NWP) models over land. Retrieved from various satellite instruments, many LSE databases are available for operational and research use. Most are updated only monthly; assuming emissivity does not change within the month. However, laboratory measurements have shown that emissivity increases by 1.7% to 16% when soil moisture content becomes higher, especially in sandy soils in the 8.2–9.2 mm range. And a clearly defined wave-like diurnal pattern of decreasing surface soil moisture during the day and recovery (or increased soil moisture) at night was observed. Therefore, it is expected that LSE possesses a diurnal wave-pattern variation with low values during day time and high values during nighttime. The physically based GOES-R ABI LSE algorithm uniquely exploits the geostationary satellites’ high temporal resolution. The algorithm was developed and applied to the radiance measurements from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on the Meteosat Second Generation (MSG) Meteosat-8/9. The results over the Sahara Desert show that 8.7 mm emissivity has a significant diurnal wave-pattern variation, with high values during nighttime and low values during day time. 10.8 mm emissivity also shows a similar diurnal variation, but with a smaller amplitude compared to 8.7 mm. 12.0 mm emissivity has an even weaker diurnal variation, and an opposite pattern as 8.7 and 10.8 mm. Evidence is provided to demonstrate that the SEVIRI LSE diurnal wave-pattern variations are real, not artifacts from the retrieval algorithm. The impacts of diurnal variations of errors in GFS forecast (temperature and moisture profiles) and in land surface temperature (LST) are analyzed; they are found to be minor compared to the LSE diurnal variations shown by SEVIRI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diurnal-seasonal and weather-related variations of land surface temperature observed from geostationary satellites

[1] The time series of clear-sky Land Surface Temperatures (LST) for one year, 2001, obtained from pyrgeometric observations at five selected US surface radiation (SURFRAD) stations and independently retrieved for the locations of these stations from Infrared Imager hourly observations of two geostationary satellites, GOES-8 and GOES-10, are presented as a sum of time-dependent expected value (...

متن کامل

Using Microwave Brightness Temperature Diurnal Cycle to Improve Emissivity Retrievals Over Land

Using microwave brightness temperature diurnal cycle to improve emissivity retrievals over land" (2012). a b s t r a c t a r t i c l e i n f o Keywords: Emissivity Brightness temperature Diurnal cycle Land Passive microwave Effective temperature Vegetation Soil moisture To retrieve microwave land emissivity, infrared surface skin temperatures have been used as surface physical temperature since...

متن کامل

Kalman filter physical retrieval of surface emissivity and temperature from geostationary infrared radiances

The high temporal resolution of data acquisition by geostationary satellites and their capability to resolve the diurnal cycle allows for the retrieval of a valuable source of information about geophysical parameters. In this paper, we implement a Kalman filter approach to apply temporal constraints on the retrieval of surface emissivity and temperature from radiance measurements made from geos...

متن کامل

Estimation of the Land Surface Temperature over the Tibetan Plateau by Using Chinese FY-2C Geostationary Satellite Data

During the process of land-atmosphere interaction, one of the essential parameters is the land surface temperature (LST). The LST has high temporal variability, especially in its diurnal cycle, which cannot be acquired by polar-orbiting satellites. Therefore, it is of great practical significance to retrieve LST data using geostationary satellites. According to the data of FengYun 2C (FY-2C) sa...

متن کامل

Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model

[1] Global high-resolution (3-hourly, 0.1 0.1 longitude-latitude) water vapor (6.7 mm) and window (11 mm) radiances from multiple geostationary satellites are used to document the diurnal cycle of upper tropospheric relative humidity (UTH) and its relationship to deep convection and high clouds in the whole tropics and to evaluate the ability of the new Geophysical Fluid Dynamics Laboratory (GF...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012